Principles of ENVIRONMENTAL SCIENCE Inquiry and Application

Eighth Edition

William CUNNINGHAM

Mary Ann CUNNINGHAM

A A A

PRINCIPLES OF

Environmental Science Inquiry & Application

Eighth Edition

William P. Cunningham University of Minnesota

Mary Ann Cunningham Vassar College

PRINCIPLES OF ENVIRONMENTAL SCIENCE: INQUIRY & APPLICATIONS, EIGHTH EDITION

Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright © 2017 by McGraw-Hill Education. All rights reserved. Printed in the United States of America. Previous editions © 2013, 2011, 2009 and 2008. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of McGraw-Hill Education, including, but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the United States.

This book is printed on recycled paper.

1 2 3 4 5 6 7 8 9 0 RMN/RMN 1 0 9 8 7 6

ISBN 978-0-07-803607-1 MHID 0-07-803607-0

Senior Vice President, Products & Markets: Kurt L. Strand Vice President, General Manager, Products & Markets: Marty Lange Vice President, Content Design & Delivery: Kimberly Meriwether David Director of Development: Rose Koos Managing Director: Thomas Timp Brand Manager: Michelle Vogler Product Developer: Jodi Rhomberg Director of Digital Content Development: Justin Wyatt, Ph.D. Digital Product Analyst: Patrick Diller Marketing Manager: Danielle Dodds Director, Content Design & Delivery: Linda Avenarius Program Manager: Lora Nevens Content Project Manager: Peggy J. Selle Assessment Content Project Manager: Tammy Juran Buyer: Laura Fuller Designer: Tara McDermott Content Licensing Specialist (Text): Lorraine Buczek Content Licensing Specialist (Photo): Carrie Burger Cover Image: ©iStock/Getty Images Plus/RF Compositor: SPI-Global Printer: R.R. Donnelley

All credits appearing on page or at the end of the book are considered to be an extension of the copyright page.

Library of Congress Cataloging-in-Publication Data

Cunningham, William P.

Principles of environmental science : inquiry & application / William P. Cunningham, University of Minnesota, Mary Ann Cunningham, Vassar College. – Eighth edition.

pages cm

ISBN 978-0-07-803607-1 (alk. paper)

1. Environmental sciences–Textbooks. I. Cunningham, Mary Ann. II. Title. GE105.C865 2017

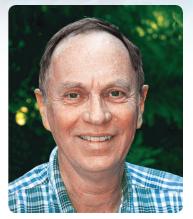
363.7-dc23

2015027521

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website does not indicate an endorsement by the authors or McGraw-Hill Education, and McGraw-Hill Education does not guarantee the accuracy of the information presented at these sites.

About the Authors

WILLIAM P. CUNNINGHAM


William P. Cunningham is an emeritus professor at the University of Minnesota. In his 38-year career at the university, he taught a variety of biology courses, including Environmental Science, Conservation Biology, Environmental Health, Environmental Ethics, Plant Physiology, General Biology, and Cell Biology. He is a member of the Academy of Distinguished Teachers, the highest teaching award granted at the University of Minnesota. He was a member of a number of interdisciplinary programs for international students, teachers, and nontraditional students. He also carried out research or taught in Sweden, Norway, Brazil, New Zealand, China, and Indonesia.

Professor Cunningham has participated in a number of governmental and nongovernmental organizations over the past 40 years. He was chair of the Minnesota chapter of the Sierra Club, a member of the Sierra Club national committee on energy policy, vice president of the Friends of the Boundary Waters Canoe Area, chair of the Minnesota governor's task force on energy policy, and a citizen member of the Minnesota Legislative Commission on Energy.

In addition to environmental science textbooks, Professor Cunningham edited three

editions of *Environmental Encyclopedia* published by Thompson-Gale Press. He has also authored or co-authored about 50 scientific articles, mostly in the fields of cell biology and conservation biology as well as several invited chapters or reports in the areas of energy policy and environmental health. His Ph.D. from the University of Texas was in botany.

His hobbies include birding, hiking, gardening, traveling, and video production. He lives in St. Paul, Minnesota, with his wife, Mary. He has three children (one of whom is co-author of this book) and seven grandchildren.

MARY ANN CUNNINGHAM

Mary Ann Cunningham is an associate professor of geography at Vassar College, in New York's Hudson Valley. A biogeographer with interests in landscape ecology, geographic information systems (GIS), and land use change, she teaches environmental science, natural resource conservation, and land-use planning, as well as GIS and spatial data analysis. Field research methods, statistical methods, and scientific methods in data analysis are regular components of her teaching. As a scientist and educator, she enjoys teaching and conducting research with both science students and non-science liberal arts students. As a geographer, she likes to engage students with the ways their physical surroundings and social context shape their world experience. In addition to teaching at a liberal arts college, she has taught at community colleges and research universities. She has participated in Environmental Studies and Environmental Science programs and has led community and college field research projects at Vassar.

Mary Ann has been writing in environmental science for nearly two decades, and she has been co-author of this book since its first edition. She is also co-author of *Environmental Science: A Global Concern*, now in its thirteenth edition. She has published work on habitat and landcover change, on

water quality and urbanization, and other topics in environmental science. She has also done research with students and colleagues on climate change, its impacts, and carbon mitigation strategies.

Research and teaching activities have included work in the Great Plains, the Adirondack Mountains, and northern Europe, as well as in New York's Hudson Valley, where she lives and teaches. In her spare time she loves to travel, hike, and watch birds. She holds a bachelor's degree from Carleton College, a master's degree from the University of Oregon, and a Ph.D. from the University of Minnesota.

Brief Contents

- 1 Understanding Our Environment 1
- 2 Environmental Systems: Matter, Energy, and Life 26
- 3 Evolution, Species Interactions, and Biological Communities 50
- 4 Human Populations 76
- 5 Biomes and Biodiversity 96
- 6 Environmental Conservation: Forests, Grasslands, Parks, and Nature Preserves 127
- 7 Food and Agriculture 152

- 8 Environmental Health and Toxicology 180
- 9 Climate 205
- 10 Air Pollution 229
- 11 Water: Resources and Pollution 250
- 12 Environmental Geology and Earth Resources 281
- **13** Energy 302
- 14 Solid and Hazardous Waste 331
- **15** Economics and Urbanization 352
- 16 Environmental Policy and Sustainability 377

Contents

Preface xiii

Science depends on skepticism and reproducibility	14
We use both deductive and inductive reasoning	15
The scientific method is an orderly way to examine	
problems	15
Understanding probability reduces uncertainty	16
tive Learning Calculating Probability	16
Experimental design can reduce bias	16
Exploring Science Understanding sustainable	
development with statistics	17
Science is a cumulative process	18
What is sound science?	18
Uncertainty, proof, and group identity	19
1.5 Critical Thinking	19

20 20 20

1.5	Critical Thinking
	Critical thinking helps us analyze information
	We all use critical thinking to examine arguments
	Critical thinking helps you learn environmental science

21
21
21
22
22
23
24
25

Envi	ronmental Systems:	
Matter, Energy, and Life		26
LEARNING OUTCOMES		26
LEARI	ING OUTCOMES	20
Case S	tudy Working to Rescue an Ecosystem	27
2.1	Systems Describe Interactions	28
	Systems can be described in terms of their characteristics	29
	Feedback loops help stabilize systems	29
2.2	Elements of Life	30
	Matter is recycled but doesn't disappear	30
	Elements have predictable characteristics	30
	Electric charges keep atoms together	31
	Acids and bases release reactive H ⁺ and OH ⁻	32
	Organic compounds have a carbon backbone	32
	Cells are the fundamental units of life	34
	Nitrogen and phosphorus are key nutrients	34
Exploring Science A "Water Planet"		35
2.3	Energy	35
	Energy occurs in different types and qualities	35
	Thermodynamics describes the conservation	
	and degradation of energy	36
2.4	Energy for Life	36
	Green plants get energy from the sun	37
	How does photosynthesis capture energy?	38
2.5	From Species to Ecosystems	38
	Organisms occur in populations, communities,	
	and ecosystems	39
	Food chains, food webs, and trophic levels link species	39
Active I	Learning Food Webs	39

Exploring Science Remote Sensing, Photosynthesis,

and Material Cycles	40
Ecological pyramids describe trophic levels	41
2.6 Biogeochemical Cycles and Life Processes	41
The hydrologic cycle	41
The carbon cycle	42
The nitrogen cycle	43
Key Concepts How do energy and matter move through systems?	44
Phosphorus eventually washes to the sea	46
The sulfur cycle	47
Conclusion	47
Data Analysis Examining Nutrients in a Wetland System	49

Evol	ution, Species Interactions,	
	Biological Communities	50
	NING OUTCOMES	50
Case St	udy Natural Selection and the Galápagos Finches	51
3.1	Evolution Leads to Diversity	52
	Natural selection and adaptation modify species	52
	Limiting factors influence species distributions	53
	A niche is a species' role and environment	54
	Speciation leads to species diversity	55
Key Co	ncepts Where do species come from?	56
	Taxonomy describes relationships among species	58
3.2		59
	Competition leads to resource allocation	59
	Predation affects species relationships	60
	Predation leads to adaptation	61
	Symbiosis involves cooperation	61
	Keystone species play critical roles	62
	loring Science Say Hello to Your 90 Trillion Little Friends	63
3.3	Population Growth	64
	Growth without limits is exponential	64
	Carrying capacity limits growth	64
	Environmental limits lead to logistic growth	65
	Species respond to limits differently:	66
Active	<i>r</i> - and <i>K</i> -selected species	60 66
	Learning Effect of K on Population Growth Rate (rN)	
3.4	Community Diversity	67
	Diversity and abundance	67 68
What C	Patterns produce community structure Can You Do? Working Locally for Ecological Diversity	68
what C	Resilience seems related to complexity	70
3.5		70 72
5.5	Communities Are Dynamic and Change over Time Are communities organismal or individualistic?	72
	Succession describes community change	72
	Some communities depend on disturbance	72
Constru	-	73 74
Conclu		
Data Aı	nalysis Competitive Exclusion	75

76

LEARN	NING OUTCOMES	76
Case St	tudy Population Stabilization in Brazil	77
4.1	Past and Current Population Growth	
	Are Very Different	78
	Human populations grew slowly until recently	78
Active L	Learning Population Doubling Time	79
4.2	Perspectives on Population Growth	79
	Does environment or culture control	
	human population growth?	79
	Technology increases carrying capacity for humans	80
	Population growth could bring benefits	81
4.3	Many Factors Determine Population Growth	81
	How many of us are there?	81
Key Co	ncepts How big is your footprint?	82
	Fertility varies among cultures and at different times	84
	Mortality offsets births	85
	Life expectancy is rising worldwide	85
What D	o You Think? China's One-Child Policy	86
	Living longer has profound social implications	87
4.4	Fertility Is Influenced by Culture	87
	People want children for many reasons	87
	Education and income affect the desire for children	89
4.5	A Demographic Transition Can Lead	
	to Stable Population Size	89
	Economic and social conditions change mortality and births	90
	Many countries are in a demographic transition	90
	Two ways to complete the demographic transition	91
	Improving women's lives helps reduce birth rates	91
4.6	Family Planning Gives Us Choices	92
	Humans have always regulated their fertility	92
	Today there are many options	92
4.7	What Kind of Future Are We Creating Now?	92
Conclu	sion	94
Data Aı	nalysis Population Change over Time	95

Biomes and Biodiversity	96
LEARNING OUTCOMES	96
Case Study Forest Responses to Global Warming	97
5.1 Terrestrial Biomes	98
Tropical moist forests are warm and wet year-round	100

Active L	earning Comparing Biome Climates	101
	Tropical seasonal forests have annual dry seasons	101
	Tropical savannas and grasslands are dry most of the year	101
	Deserts are hot or cold, but always dry	101
	Temperate grasslands have rich soils	102
	Temperate scrublands have summer drought	102
	Temperate forests can be evergreen or deciduous	103
	Boreal forests lie north of the temperate zone	103
	Tundra can freeze in any month	104
5.2	Marine Environments	105
Active L	earning Examining Climate Graphs	105
	Open ocean communities vary from surface to hadal zone	106
	Tidal shores support rich, diverse communities	106
5.3	Freshwater Ecosystems	108
	Lakes have extensive open water	108
	Wetlands are shallow and productive	108
	Streams and rivers are open systems	109
5.4	Biodiversity	110
	Increasingly we identify species by genetic similarity	110
	Biodiversity hot spots are rich and threatened	110
5.5	Benefits of Biodiversity	110
	Biodiversity provides food and medicines	111
	Biodiversity can aid ecosystem stability	112
	Aesthetic and existence values are important	112
5.6	What Threatens Biodiversity?	112
	HIPPO summarizes human impacts	112
	Habitat destruction is usually the main threat	112
Key Cor	ncepts What is biodiversity worth?	114
	Invasive species are a growing threat	116
	oring Science What's the Harm in Setting Unused Bait Free?	117
What C	an You Do? You Can Help Preserve Biodiversity	119
	Pollution poses many types of risk	119
	Population growth consumes space, resources	120
	Overharvesting depletes or eliminates species	120
5.7	Biodiversity Protection	122
	Hunting and fishing laws protect useful species	122
	The Endangered Species Act protects habitat and species	122
	Recovery plans aim to rebuild populations	122
	Landowner collaboration is key	123
	The ESA has seen successes and controversies	123
	Many countries have species protection laws	124
	Habitat protection may be better than species protection	124
Conclus	sion	125
Data An	alysis Confidence Limits in the Breeding Bird Survey	126

Environmental Conservation:	
Forests, Grasslands, Parks,	
and Nature Preserves	127
LEARNING OUTCOMES	127
Case Study Palm Oil and Endangered Species	128

6.1	World Forests	129
	Boreal and tropical forests are most abundant	129
Active I	Learning Calculating Forest Area	130
	Forests provide essential products	130
	Tropical forests are being cleared rapidly	131
	Saving forests stabilizes our climate	133
	Temperate forests also are at risk	133
What D	o You Think? Protecting Forests to Prevent	
Climate	e Change	135
,	ncepts Save a tree, save the climate?	136
	loring Science Using Technology to Protect the Forest	138
What C	Can You Do? Lowering Your Forest Impacts	139
6.2	Grasslands	140
	Grazing can be sustainable or damaging	141
	Overgrazing threatens many rangelands	141
	Ranchers are experimenting with new methods	142
6.3	Parks and Preserves	142
	Many countries have created nature preserves	143
	Not all preserves are preserved	144
	Marine ecosystems need greater protection	145
	Conservation and economic development can work together	146
	Native people can play important roles in nature protection	146
	loring Science Saving the Chimps of Gombe	147
What C	Can You Do? Being a Responsible Ecotourist	148
	Species survival can depend on preserve size and shape	149
Conclu	sion	149
Data A	nalysis Detecting Edge Effects	151

Food and Agriculture152LEARNING OUTCOMES152

Case S	tudy Farming the Cerrado	153
7.1	Global Trends in Food and Hunger	154
	Food security is unevenly distributed	154
Active	Learning Mapping Poverty and Plenty	156
	Famines have political and social roots	156
7.2	How Much Food Do We Need?	157
	A healthy diet includes the right nutrients	157
	Overeating is a growing world problem	157
	More production doesn't necessarily reduce hunger	158
	Biofuels have boosted commodity prices	159
	Do we have enough farmland?	159
7.3	What Do We Eat?	160
	Rising meat production is a sign of wealth	160
	Seafood, both wild and farmed, depends on	
	wild-source inputs	161
	Biohazards arise in industrial production	162
Active	Learning Where in the World Did You Eat Today?	162
7.4	Living Soil Is a Precious Resource	163
	What is soil?	163
	Healthy soil fauna can determine soil fertility	163

	Your food comes mostly from the A horizon	164
	How do we use and abuse soil?	165
	Water is the leading cause of soil loss	165
	Wind is a close second in erosion	166
7.5	Agricultural Inputs	166
	High yields usually require irrigation	166
	Fertilizers boost production	167
	Modern agriculture runs on oil	167
Key Co	ncepts How can we feed the world?	168
	Pesticide use continues to rise	170
7.6	How Have We Managed to Feed Billions?	171
	The green revolution has increased yields	171
	Genetic engineering has benefits and costs	172
	Most GMOs are engineered for pesticide production	
	or pesticide tolerance	173
	Is genetic engineering safe?	173
7.7	Sustainable Farming Strategies	174
	Soil conservation is essential	174
	Groundcover, reduced tilling protect soil	175
	Low-input sustainable agriculture can benefit people	
	and the environment	175
What D	o You Think? Shade-Grown Coffee and Cocoa	176
7.8	Consumer Action and Farming	177
	You can be a locavore	177
	You can eat low on the food chain	177
Conclu	ision	177
Data A	nalysis Mapping Your Food Supply	179

Environmental Health and Toxicology LEARNING OUTCOMES

Case Study How Dangerous Is BPA?	181
8.1 Environmental Health	182
Global disease burden is changing	182
Emergent and infectious diseases still kill millions	
of people	183
Conservation medicine combines ecology	
and health care	185
Resistance to antibiotics and pesticides is increasing	186
What Can You Do? Tips for Staying Healthy	187
8.2 Toxicology	188
How do toxics affect us?	188
Endocrine hormone disrupters are of special concern	189
Key Concepts What toxins and hazards are present	
in your home?	190
8.3 Movement, Distribution, and Fate of Toxins Solubility and mobility determine when and	192
where chemicals move	192

	Exposure and susceptibility determine how we respond	192
	Bioaccumulation and biomagnification increase	
	chemical concentrations	193
	Persistence makes some materials a greater threat	193
	Chemical interactions can increase toxicity	195
8.4	Mechanisms for Minimizing Toxic Effects	195
	Metabolic degradation and excretion eliminate toxics	195
	Repair mechanisms mend damage	195
8.5	Measuring Toxicity	195
	We usually test toxic effects on lab animals	196
	There is a wide range of toxicity	196
Active L	earning Assessing Toxins	197
	Acute versus chronic doses and effects	197
	Detectable levels aren't always dangerous	198
	Low doses can have variable effects	198
Expl	oring Science The Epigenome	199
8.6	Risk Assessment and Acceptance	200
	Our perception of risks isn't always rational	200
	How much risk is acceptable?	201
Active L	earning Calculating Probabilities	201
8.7	Establishing Public Policy	202
Conclu	sion	203
Data Ar	nalysis How Do We Evaluate Risk and Fear?	204

Climate	205
LEARNING OUTCOMES	205

Case S	tudy Shrinking Florida	206
9.1	What Is the Atmosphere?	207
	The atmosphere captures energy selectively	208
	Evaporated water stores and redistributes heat	209
	Ocean currents also redistribute heat	210
9.2	Climate Changes over Time	210
	Ice cores tell us about climate history	211
	What causes natural climatic swings?	211
	El Niño/Southern Oscillation is one of many	
	regional cycles	212
9.3	How Do We Know the Climate Is Changing	
	Faster Than Usual?	213
Active I	earning Can you explain key evidence on	
climate	change?	213
	Scientific consensus is clear	214
	Rising heat waves, sea level, and storms are expected	214
	The main greenhouse gases are CO_2 , CH_4 , and N_2O	215
	What consequences do we see?	217
	Ice loss produces positive feedbacks	217
	Controlling emissions is cheap compared to	
	climate change	219
	Why are there disputes over climate evidence?	219

Key Concepts Climate change in a nutshell:

Rey Concepts Climate change in a natshell:	
How does it work?	
Exploring Science How Do We Know That Climate	
Change Is Human-Caused?	222
9.4 Envisioning Solutions	223
International protocols have tried to establish common rules	224
A wedge approach has multiple solutions	224
Wind, water, and solar could save the climate	225
What Do You Think? Unburnable carbon	226
What Can You Do? Climate Action	226
Local initiatives are everywhere	226
Carbon capture saves CO ₂ but is expensive	227
Conclusion	227
Data Analysis Examining the IPCC Fifth Assessment	
Report (AR5)	228

Air Pollution		
LEARNING OUTCOMES	229	
Case Study The Great London Smog	230	
10.1 Air Pollution and Health	231	
The Clean Air Act regulates major pollutants	232	
Active Learning Compare Sources of Pollutants	233	
Conventional pollutants are abundant and serious	233	
Hazardous air pollutants can cause cancer and		
nerve damage	235	
Mercury is a key neurotoxin	236	
Indoor air can be worse than outdoor air	236	
10.2 Air Pollution and Climate	236	
What Do You Think? Cap and Trade for Mercury Pollution?	237	
Air pollutants travel the globe	237	
CO_2 and halogens are key greenhouse gases	238	
The Supreme Court has charged the EPA with controlling		
greenhouse gases	239	
CFCs also destroy ozone in the stratosphere	239	
CFC control has had remarkable success	240	
10.3 Environmental and Health Effects	240	
Acid deposition results from SO ₄ and NO _x	241	
Urban areas endure inversions and heat islands	242	
Smog and haze reduce visibility	243	
10.4 Air Pollution Control	243	
The best strategy is reducing production	243	
Clean air legislation is controversial but		
extremely successful	244	
Trading pollution credits is one approach	245	
10.5 The Ongoing Challenge	245	
Pollution persists in developing areas	245	
Change is possible	245	
Key Concepts Can we afford clean air?	246	
Conclusion	248	
Data Analysis How Polluted Is Your Hometown?		

Water: Resources and Pollution LEARNING OUTCOMES

Case S	tudy A Water State of Emergency	251
11.1 Water Resources		
	How does the hydrologic cycle redistribute water?	252
	Major water compartments vary in residence time	253
	Groundwater storage is vast and cycles slowly	254
	Surface water and atmospheric moisture cycle quickly	255
Active I	Learning Mapping the Water-Rich	
and Wo	ater-Poor Countries	255
11.2	How Much Water do We Use?	255
	"Virtual water" is exported in many ways	256
	Some products are thirstier than others	256
	Industrial uses include energy production	257
	Domestic water supplies protect health	257
11.3	Dealing with Water Scarcity	257
	Drought, climate, and water shortages	258
What D	Do You Think? Water and Power	259
	Groundwater supplies are being depleted	260
	Diversion projects redistribute water	260
	Questions of justice often surround dam projects	261
	Would you fight for water?	262
11.4	Water Conservation and Management	263
	Everyone can help conserve water	263
What C	Can You Do? Saving Water and Preventing Pollution	263
	Communities are starting to recycle water	264
11.5	Water Pollutants	264
	Pollution includes point sources and nonpoint sources	264
	Biological pollution includes pathogens and waste	265
	Nutrients cause eutrophication	266
	Inorganic pollutants include metals, salts, and acids	267
Exp	loring Science Inexpensive Water Purification	268
Organic chemicals include pesticides and		
	industrial substances	268
	Is bottled water safer?	269
	Sediment is one of our most abundant pollutants	269
11.6	Persistent Challenges	270
	Developing countries often have serious	
	water pollution	270
	Groundwater is especially hard to clean up	271
	Ocean pollution has few controls	272
11.7	Water Treatment and Remediation	273
	Impaired water can be restored	273
	Nonpoint sources require prevention	273
	How do we treat municipal waste?	274
	Municipal treatment has three levels of quality	274
	Natural wastewater treatment can be an answer	274
	Remediation can involve containment, extraction,	
	or biological treatment	275
Key Co	ncepts Could natural systems treat	
our was	stewater?	276

11.8	Legal Protections for Water	278
	The Clean Water Act was ambitious, popular,	
	and largely successful	278
	The CWA helped fund infrastructure	278
	The CWA established permitting systems	278
	The CWA has made real but incomplete progress	279
Conclu	sion	279
Data Aı	nalysis Graphing Global Water Stress and Scarcity	280

Envi	ronmental Geology	
	Earth Resources	281
LEAR	LEARNING OUTCOMES	
Case S	tudy Mountaintop Removal Mining	282
12.1	Earth Processes Shape Our Resources	283
	Earth is a dynamic planet	283
	Tectonic processes reshape continents	
	and cause earthquakes	284
12.2	Minerals and Rocks	286
	The rock cycle creates and recycles rocks	286
	Weathering and sedimentation	286
12.3	Economic Geology and Mineralogy	287
	Metals are essential to our economy	287
	Nonmetal mineral resources include gravel,	200
	clay, glass, and salts	288
	loring Science Rare Earth Metals: New Strategic Materials	289
me	Currently, the earth provides almost all our fuel	289
Kev Co	ncepts Where does your cell phone come from?	290
-	Environmental Effects of Resource Extraction	292
	Learning What Geologic Resources	202
	u Using Right Now?	292
	Mining and drilling can degrade water quality	292
	Surface mining destroys landscapes	293
	Processing contaminates air, water, and soil	294
12.5	Conserving Geologic Resources	294
	Recycling saves energy as well as materials	294
	New materials can replace mined resources	295
12.6	Geologic Hazards	295
	Earthquakes are frequent and deadly hazards	295
	Volcanoes eject deadly gases and ash	296
	Floods are part of a river's land-shaping processes	297
	Flood control	298
	Mass wasting includes slides and slumps	298
	Erosion destroys fields and undermines buildings	299
Conclu		299
Data A	nalysis Exploring Recent Earthquakes	301

Ene	rgy	302
	NING OUTCOMES	302
	tudy Greening Gotham: Can New York Reach	
an 80 l	by 50 Goal?	303
13.1	Energy Resources	304
	The future of energy is not the past	304
	We measure energy in units such as J and W	305
	How much energy do we use?	306
13.2		306
	Coal resources are greater than we can use	306
	Coal use is declining in the U.S.	307
	When will we run out of oil? Extreme oil and tar sands have extended our supplies	307 308
	Access to markets is a key challenge	308
	Natural gas is growing in importance	309
	Hydraulic fracturing opens up tight gas resources	309
13.3	Nuclear Power and Hydropower	310
10.0	Nuclear power is important but controversial	310
	How do nuclear reactors work?	311
	We lack safe storage for radioactive waste	311
What L	Do You Think? Twilight for Nuclear Power?	312
	Moving water is one of our oldest power sources	313
	Large dams have large impacts	314
13.4	Energy Efficiency and Conservation	314
	Can You Do? Steps to Save Energy and Money	314
Active	Learning Driving Down Gas Costs	315
	Costs can depend on how you calculate them	315
	Tight houses save money	316
	Passive housing is becoming standard in some areas	316 317
40 5	Cogeneration makes electricity from waste heat	
13.5	Wind and Solar Energy	317 318
	Wind could meet all our energy needs Wind power provides local control of energy	318
	Solar thermal systems collect usable heat	319
	CSP makes electricity from heat	319
Kev Co	oncepts How can we transition to alternative energy?	320
,	Photovoltaic cells generate electricity directly	323
13.6	Biomass and Geothermal Energy	324
	Ethanol has been the main focus	324
	Cellulosic ethanol could be an alternative	325
	Methane from biomass is efficient and clean	325
	Could algae be a hope for the future?	326
	Geothermal energy provides electricity and heat	326
13.7	Energy Storage and Transmission	326
	Utilities can promote renewables	327
13.8	What's Our Energy Future?	328
Conclu	usion	329
Data A	nalysis Personal Energy Use	330

Solid and Hazardous Waste

Case St	tudy A Waste-Free City	332
14.1	What Waste Do We Produce?	333
	The waste stream is everything we throw away	334
14.2	Waste Disposal Methods	334
	Open dumps release hazardous substances into	
	the air and water	334
	Ocean dumping is mostly uncontrolled	335
	Landfills receive most of our waste	336
Active I	Learning Life-Cycle Analysis	336
	We often export waste to countries ill-equipped	
	to handle it	336
	Incineration produces energy from trash	337
What D	o You Think? Environmental Justice	338
14.3	Shrinking the Waste Stream	339
	Recycling saves money, energy, and space	340
	Composting recycles organic waste	341
	Reuse is even better than recycling	341
Key Co	ncepts Garbage: Liability or resource?	342
	Reducing waste is the cheapest option	344
What C	Can You Do? Reducing Waste	345
14.4	Hazardous and Toxic Wastes	345
	Hazardous waste includes many dangerous substances	345
Active l	Learning A Personal Hazardous Waste Inventory	346
	Federal legislation regulates hazardous waste	346
	Superfund sites are listed for federally funded cleanup	347
	Brownfields present both liability and opportunity	348
	Hazardous waste must be processed or stored permanently	348
Expl	loring Science Bioremediation	350
Conclu	sion	350
Data A	nalysis How Much Waste Do You Produce,	
and Ho	w Much Do You Know How to Manage?	351

Economics and Urbanization	352
LEARNING OUTCOMES	352
Case Study Vauban: A Car-Free Suburb	353

15.1	Cities Are Places of Crisis and Opportunity	354
	Large cities are expanding rapidly	355
	Immigration is driven by push and pull factors	356
	Congestion, pollution, and water shortages	
	plague many cities	356
What [Do You Think? People for Community Recovery	357
	Many cities lack sufficient housing	357
15.2	Urban Planning	358
	Transportation is crucial in city development	358
	Rebuilding cities	359
Key Co	ncepts What makes a city green?	360
	We can make our cities more livable	362
	New urbanism incorporates smart growth	362
15.3	Economics and Sustainable Development	364
	Can development be sustainable?	364
	Our definitions of resources shape how we use them	364
	Ecological economics incorporates principles	
	of ecology	365
	Scarcity can lead to innovation	367
	Communal property resources are a classic problem	0.67
	in economics	367
15.4	Natural Resource Accounting	368
Active	Learning Costs and Benefits	369
	Internalizing external costs	369
	New approaches measure real progress	370
	Can You Do? Personally Responsible Consumerism	370
15.5	Trade, Development, and Jobs	371
	Microlending helps the poorest of the poor	371
	Learning Try Your Hand at Microlending	371
What L	Do You Think? Loans That Change Lives	372
	Market mechanisms can reduce pollution	373
15.6	Green Business and Green Design	373
	Green design is good for business and the environment	373
	Environmental protection creates jobs	374
Conclu	ision	374
Data A	nalysis Plotting Trends in Urbanization	
and Ec	onomic Indicators	376

Environmental Policy and Sustainability LEARNING OUTCOMES

Case S	tudy 350.org: Making a Change	378
16.1	Environmental Policy and Science	379
	What drives policy making?	379
	Policy creation is ongoing and cyclic	380

	Are we better safe than sorry?	380
Active L	earning Environment, Science, and	
Policy i	n Your Community	381
16.2	Major Environmental Laws	381
	NEPA (1969) establishes public oversight	381
	The Clean Air Act (1970) regulates air emissions	381
	The Clean Water Act (1972) protects surface water	382
	The Endangered Species Act (1973) protects wildlife	382
	The Superfund Act (1980) addresses hazardous sites	382
16.3	How Are Policies Implemented?	383
	The legislative branch establishes statutes (laws)	383
Key Cor	ncepts How does the Clean Water Act benefit you?	384
	The judicial branch resolves legal disputes	386
	The executive branch oversees administrative rules	387
	How much government do we want?	387
16.4	International Policies	388
	Major international agreements	389
	Enforcement often relies on national pride	389
16.5	What Can Individuals Do?	390
What C	an You Do? Actions to influence environmental policy	391
	Environmental literacy integrates science and policy	391
	Colleges and universities are powerful catalysts	
	for change	392
Expl	oring Science Citizen Science: The Christmas	
Bird	Count	393
	Schools are embracing green building	393
	Audits help reduce energy consumption	394
	How much is enough?	395
16.6	The Challenges of Sustainable Development	396
	UN Millennium Development Goals provided	
	benchmarks	396
Conclu	sion	398
Data Aı	nalysis Campus Environmental Audit	399
APPEN	DIX 1 Vegetation	A-2
APPEN	IDIX 2 World Population Density	A-3
APPEN	DIX 3 Temperature Regions and Ocean Currents	A-4
Glossa	ry G-1	

С	redits	C-1

Index I-1

List of Case Studies

Chapter 1	Understanding Our Environment Assessing Sustainability	2
Chapter 2	Environmental Systems: Matter and Energy of Life Working to Rescue an Ecosystem	27
Chapter 3	Evolution, Species Interactions, and Biological Communities Natural Selection and the Galápagos Finches	51
Chapter 4	Human Populations Population Stabilization in Brazil	77
Chapter 5	Biomes and Biodiversity Forest Responses to Global Warming	97
Chapter 6	Environmental Conservation: Forests, Grasslands, Parks, and Nature Preserves Palm Oil and Endangered Species	128
Chapter 7	Food and Agriculture Farming the Cerrado	153
Chapter 8	Environmental Health and Toxicology How Dangerous Is BPA?	181
Chapter 9	Climate Shrinking Florida	206
Chapter 10	Air Pollution The Great London Smog	230
Chapter 11	Water: Resources and Pollution A Water State of Emergency	251
Chapter 12	Environmental Geology and Earth Resources Mountaintop Removal Mining	282
Chapter 13	Energy Greening Gotham: Can New York Reach an 80 by 50 Goal?	303
Chapter 14	Solid and Hazardous Waste A Waste-Free City	332
Chapter 15	Economics and Urbanization Vauban: A Car-Free Suburb	353
Chapter 16	Environmental Policy and Sustainability 350.org: Making a Change	378
	Over 200 additional Case Studies can be found online o instructor's resource page at www.mcgrawhillconnect.co	

Preface

UNDERSTANDING CRISIS AND OPPORTUNITY

Environmental science often emphasizes that while we are surrounded by challenges, we also have tremendous opportunities. We face critical challenges in biodiversity loss, clean water protection, climate change, population growth, sustainable food systems, and many other areas. But we also have tremendous opportunities to take action to protect and improve our environment. By studying environmental science, you have the opportunity to gain the tools and the knowledge to make intelligent choices on these and countless other questions.

Because of its emphasis on problem solving, environmental science is often a hopeful field. Even while we face burgeoning cities, warming climates, looming water crises, we can observe solutions in global expansion in access to education, healthcare, information, even political participation and human rights. Birthrates are falling almost everywhere, as women's rights gradually improve. Creative individuals are inventing new ideas for alternative energy and transportation systems that were undreamed of a generation ago. We are rethinking our assumptions about how to improve cities, food production, water use, and air quality. Local action is rewriting our expectations, and even economic and political powers feel increasingly compelled to show cooperation in improving environmental quality

Climate change is a central theme in this book and in environmental science generally. As in other topics, we face dire risks but also surprising new developments and new paths toward sustainability. China, the world's largest emitter of carbon dioxide, expects to begin reducing its emissions within in a decade, much sooner than predicted. Many countries are starting to show declining emissions, and there is clear evidence that economic growth no longer depends on carbon fossil fuels. Greenhouse gas emissions continue to rise, but nations are showing unexpected willingness to cooperate in striving to reduce emissions. Much of this cooperation is driven by growing acknowledgment of the widespread economic and humanitarian costs of climate change. Additional driving forces, though, are the growing list of alternatives that make carbon reductions far easier to envision, or even to achieve, than a few years ago.

Sustainability, also a central idea in this book, has grown from a fringe notion to a widely shared framework for daily actions (recycling, reducing consumption) and civic planning (building energy-efficient buildings, investing in public transit and bicycle routes). Sustainability isn't just about the environment anymore. Increasingly we know that sustainability is also smart economics and that it is essential for social equity. Energy efficiency saves money. Alternative energy can reduce our reliance on fuel sources in politically unstable regions. Healthier food options reduce medical costs. Accounting for the public costs and burdens of pollution and waste disposal helps us rethink the ways we dispose of our garbage and protect public health. Growing awareness of these co-benefits helps us understand the broad importance of sustainability.

Students are Providing Leadership

Students are leading the way in reimagining our possible futures. Student movements have led innovation in technology and science, in sustainability planning (chapter 1), in environmental governance (chapter 9), and in environmental justice around the world. The organization 350.org (chapter 16) was started by a small group of students seeking to address climate change. That movement has energized local communities to join the public debate on how to seek a sustainable future. Students have the vision and the motivation to create better paths toward sustainability and social justice, at home and globally.

You may be like many students who find environmental science an empowering field. It provides the knowledge needed to use your efforts more effectively. Environmental science applies to our everyday lives and the places where we live, and we can apply ideas learned in this discipline to any place or occupation in which we find ourselves. And environmental science can connect to any set of interests or skills you might bring to it: Progress in the field involves biology, chemistry, geography, and geology. Communicating and translating ideas to the public, who are impacted by changes in environmental quality, requires writing, arts, media, and other communication skills. Devising policies to protect resources and enhance cooperation involves policy, anthropology, culture, and history. What this means is that while there is much to learn, this field can also connect with whatever passions you bring to the course.

WHAT SETS THIS BOOK APART?

Solid science and an emphasis on sustainability: This book reflects the authors' decades of experience in the field and in the classroom, which make it up-to-date in approach, in data, and in applications of critical thinking. The authors have been deeply involved in sustainability, environmental science, and conservation programs at the University of Minnesota and at Vassar College. Their experience and courses on these topics have strongly influenced the way ideas in this book are presented and explained.

Demystifying science: We make science accessible by showing how and why data collection is done and by giving examples, practice, and exercises that demonstrate central principles. *Exploring Science* readings empower students by helping them understand how scientists do their work. These readings give examples of technology and methods in environmental science.

Quantitative reasoning: Students need to become comfortable with graphs, data, and comparing numbers. We provide focused discussions on why scientists answer questions with numbers, the nature of statistics, of probability, and how to interpret the message in a graph. We give accessible details on population models, GIS (mapping and spatial analysis), remote sensing, and other quantitative techniques. In-text applications and online, testable *Data Analysis* questions give students opportunities to practice with ideas, rather than just reading about them.

Critical thinking: We provide a focus on critical thinking, one of the most essential skills for citizens, as well as for students. Starting with a focused discussion of critical thinking in chapter 1, we offer abundant opportunities for students to weigh contrasting evidence and evaluate assumptions and arguments, including *What Do You Think?* readings.

Up-to-date concepts and data: Throughout the text we introduce emerging ideas and issues such as ecosystem services, cooperative ecological relationships, epigenetics, and the economics of air pollution control, in addition to basic principles such as population biology, the nature of systems, and climate processes. Current approaches to climate change mitigation, campus sustainability, sustainable food production, and other issues give students current insights into major issues in environmental science and its applications. We introduce students to current developments such as ecosystem services, coevolution, strategic targeting of Marine Protected Areas, impacts of urbanization, challenges of REDD (reducing emissions through deforestation and degradation), renewable energy development in China and Europe, fertility declines in the developing world, and the impact of global food trade on world hunger.

Active learning: Learning how scientists approach problems can help students develop habits of independent, orderly, and objective thought. But it takes active involvement to master these skills. This book integrates a range of learning aids—*Active Learning exercises, Critical Thinking and Discussion* questions, and *Data Analysis* exercises—that push students to think for themselves. Data and interpretations are presented not as immutable truths but rather as evidence to be examined and tested, as they should be in the real world. Taking time to look closely at figures, compare information in multiple figures, or apply ideas in text is an important way to solidify and deepen understanding of key ideas.

Synthesis: Students come to environmental science from a multitude of fields and interests. We emphasize that most of our pressing problems, from global hunger or climate change to conservation of biodiversity, draw on sciences and economics and policy. This synthesis shows students that they can be engaged in environmental science, no matter what their interests or career path. A global perspective: Environmental science is a globally interconnected discipline. Case studies, data, and examples from around the world give opportunities to examine international questions. Half of the 16 case studies examine international issues of global importance, such as forest conservation in Indonesia, soy production in Brazil, and car-free cities in Germany. Half of all boxed readings and Key Concepts are also global in focus. In addition, Google Earth place marks take students virtually to locations where they can see and learn the context of the issues they read.

Key concepts: In each chapter this section draws together compelling illustrations and succinct text to create a summary "takehome" message. These key concepts draw together the major ideas, questions, and debates in the chapter but give students a central idea on which to focus. These can also serve as starting points for lectures, student projects, or discussions.

Positive perspective: All the ideas noted here can empower students to do more effective work for the issues they believe in. While we don't shy away from the bad news, we highlight positive ways in which groups and individuals are working to improve their environment. *What Can You Do*? features in every chapter offer practical examples of things everyone can do to make progress toward sustainability.

Thorough coverage: No other book on in the field addresses the multifaceted nature of environmental questions such as climate policy, sustainability, or population change, with the thoroughness this book has. We cover not just climate change but also the nature of climate and weather systems that influence our day-to-day experience of climate conditions. We explore both food shortages and the emerging causes of hunger—such as political conflict, biofuels, and global commodity trading—as well as the relationship between food insecurity and the growing pandemic of obesity-related illness. In these and other examples, this book is a leader in in-depth coverage of key topics.

Student empowerment: Our aim is to help students understand that they can make a difference. From campus sustainability assessments (chapter 1) to public activism (chapter 13) to global environmental organizing (chapter 16) we show ways that student actions have led to policy changes on all scales. In all chapters we emphasize ways that students can take action to practice the ideas they learn and to play a role in the policy issues they care about. *What can you do*? boxed features give steps students can take to make a difference.

Exceptional online support: Online resources integrated with readings encourage students to pause, review, practice, and explore ideas, as well as to practice quizzing themselves on information presented. McGraw-Hill's ConnectPlus (www.mcgrawhillconnect.com) is a web-based assignment and assessment platform that gives students the means to better connect with their coursework, with their instructors, and with the important concepts that they will need to know for success now and in the future. Valuable assets such as LearnSmart (an adaptive learning system), an interactive ebook, *Data Analysis* exercises, the extensive case study library, and Google Earth exercises are all available in Connect.

WHAT'S NEW IN THIS EDITION?

This edition has an enhanced focus on two major themes, climate and sustainability. These themes have always been central to this book, but the current edition gives additional explanation and examples that help students consider these dominant ideas of our time. The climate chapter (chapter 9) provides up-to-date data from the Intergovernmental Panel on Climate Change (IPCCC) as well as expanded explanations of climate dynamics, including positive feedbacks and why greenhouse gases capture energy. Overall, one-third of chapter-opening case studies are new, and data and figures have been updated throughout the book. Specific chapter changes include the following:

Chapter 1: New opening case study focuses on campus sustainability and how students can contribute. There is a revised discussion of methods in science and of major themes in the course, to give students a sense of direction through the book and the course. The *Exploring Science* boxed reading is updated to focus on statistics for the Human Development Index.

Chapter 2: This chapter emphasizes connections between general ideas in environmental chemistry and environmental systems, and why they matter for understanding topics in an environmental science class: For example why should you know about isotopes, and how does pH or radioactivity matter in water pollution?

Chapter 3: Expanded attention to the importance of symbiotic and coevolutionary relationships among species. Included in this is a new boxed reading on the microbiome of organisms that live in and on our bodies and aid our survival (p. 63). We have retained the focus on Darwin, evolution, and principles of speciation that are central to this chapter.

Chapter 4: Updated figures on global population growth, fertility rates, resource consumption, and hunger. Updated data regarding mortality, disease risk, life expectancy, and other demographic factors. Estimates of global population trends by 2050 are updated.

Chapter 6: New opening case study on declining forest habitat for orangutans, associated with forest clearance for palm oil production and other purposes. This phenomenon is spreading throughout the tropics and represents one of the greatest recent threats to forest conservation. The case study links to a new boxed reading on Norwegian REDD investments in Indonesian forest conservation in the interest of slowing climate change. Updated figures on global forest extent and changes, including evident declines in deforestation rates in Brazil.

Chapter 7: Updated figures on food production and access, also updated data on hunger, obesity, and food insecurity, including the role of conflict in famines. Expanded discussion of pesticides, including a new graph and map of glyphosate applications (fig. 7.22).

Chapter 8: New section on emergent diseases, including those associated with bushmeat in developing areas and updated map of major emergent disease incidents (fig. 8.5). There is a new discussion of antibiotic resistant bacterial infections and their link to confined livestock production, as well as to misuse of antibiotics in healthcare.

Chapter 9: New opening case study on sea level change and its impacts on coastal areas, such as Florida, as well as 11 new or revised figures, including figures from recent IPCC reports. A new *Active Learning* section (p. 213) asks students to explain key evidence for climate change; a new section on positive feedbacks explains the role of sea ice in global climate regulation (fig. 9. 18). The chapter closes with an updated discussion of policy responses to climate change.

Chapter 10: Updated discussion of EPA regulation of carbon as a pollutant, and of controlling halogen emissions. New discussion of persistent air pollution challenges in India, China, and other parts of the industrializing world.

Chapter 11: New opening case study on water resources in California and the impacts of drought on agriculture and cities. Because the previous case study on Lake Mead and the Colorado River remains newsworthy, the topic has been revised and updated as a *What do you think?* boxed reading. Largely revised section on clean water protections, and clean water in developing areas.

Chapter 12: Updated notes on fossil fuel extraction and its effects in the continental United States, including earthquakes. The Kathmandu earthquake of spring 2015 is noted, with reasons for its extreme destructiveness.

Chapter 13: The energy chapter is largely revised to reflect recent changes in both conventional energy and sustainable energy resources. Updates include expanded attention to the emerging importance of alternative energy resources, as well as developments in the conventional energy resources that still dominate supplies. A new opening case study highlights the importance of energy policy for climate change. The chapter has 11 new figures, including updated maps of gas, wind, and solar energy resources.

Chapter 14: Figures on waste production and management are updated.

Chapter 16: Recasts policy to more explicitly integrate environmental science with the policy options that apply environmental data to decision making (section 16.1). The discussion of judicial impacts on policy includes updated notes on Supreme Court's rulings requiring that the EPA regulate carbon dioxide, as well as the Court's impacts on campaign finance debates. The section on individual actions is revised, as is the *What can you do*? box and a discussion of the successes of the Millennium Development Goals and the challenge of the UN's emerging Sustainable Development Goals.

ACKNOWLEDGMENTS

We are sincerely grateful to Jodi Rhomberg and Michelle Vogler, who oversaw the development of this edition, and to Peggy Selle, who shepherded the project through production.

We would like to thank the following individuals who wrote and/ or reviewed learning goal-oriented content for **LearnSmart**. *Broward College*, Nilo Marin *Broward College*, David Serrano *Northern Arizona University*, Sylvester Allred *Palm Beach State College*, Jessica Miles *Roane State Community College*, Arthur C. Lee *University of North Carolina at Chapel Hill*, Trent McDowell *University of Wisconsin, Milwaukee*, Gina S. Szablewski

Input from instructors teaching this course is invaluable to the development of each new edition. Our thanks and gratitude go out to the following individuals who either completed detailed chapter reviews or provided market feedback for this course. American University, Priti P. Brahma Antelope Valley College, Zia Nisani Arizona Western College, Alyssa Haygood Assistant Professor Viterbo University, Christopher Iremonger Aurora University, Carrie Milne-Zelman Baker College, Sandi B. Gardner Boston University, Kari L. Lavalli Bowling Green State University, Daniel M. Pavuk Bradley University, Sherri J. Morris Broward College, Elena Cainas Broward College, Nilo Marin California Energy Commission, James W. Reede California State University-East Bay, Gary Li California State University, Natalie Zayas Carthage College, Tracy B. Gartner Central Carolina Community College, Scott Byington Central State University, Omokere E. Odje Clark College, Kathleen Perillo Clemson University, Scott Brame College of DuPage, Shamili Ajgaonkar Sandiford College of Lake County, Kelly S. Cartwright College of Southern Nevada, Barry Perlmutter College of the Desert, Tracy Albrecht Community College of Baltimore County, Katherine M. Van de Wal Connecticut College, Jane I. Dawson Connecticut College, Chad Jones Connors State College, Stuart H. Woods Cuesta College, Nancy Jean Mann Dalton State College, David DesRochers Dalton State College, Gina M. Kertulis-Tartar East Tennessee State University, Alan Redmond Eastern Oklahoma State College, Patricia C. Bolin Ratliff

Edison State College, Cheryl Black Elgin Community College, Mary O'Sullivan Erie Community College, Gary Poon Estrella Mountain Community College, Rachel Smith Farmingdale State College, Paul R. Kramer Fashion Institute of Technology, Arthur H. Kopelman Flagler College, Barbara Blonder Florida State College at Jacksonville, Catherine Hurlbut Franklin Pierce University, Susan Rolke Galveston College, James J. Salazar Gannon University, Amy L. Buechel Gardner-Webb University, Emma Sandol Johnson Gateway Community College, Ramon Esponda Geneva College, Marjory Tobias Georgia Perimeter College, M. Carmen Hall Georgia Perimeter College, Michael L. Denniston Gila Community College, Joseph Shannon Golden West College, Tom Hersh Gulf Coast State College, Kelley Hodges Gulf Coast State College, Linda Mueller Fitzhugh Heidelberg University, Susan Carty Holy Family University, Robert E. Cordero Houston Community College, Yiyan Bai Hudson Valley Community College, Janet Wolkenstein Illinois Mathematics and Science Academy, C. Robyn Fischer Illinois State University, Christy N. Bazan Indiana University of Pennsylvania, Holly J. Travis Indiana Wesleyan University, Stephen D. Conrad James Madison University, Mary Handley James Madison University, Wayne S. Teel John A. Logan College, Julia Schroeder Kentucky Community & Technical College System-Big Sandy District, John G. Shiber Lake Land College, Jeff White Lane College, Satish Mahajan Lansing Community College, Lu Anne Clark Lewis University, Jerry H. Kavouras Lindenwood University, David M. Knotts Longwood University, Kelsey N. Scheitlin Louisiana State University, Jill C. Trepanier Lynchburg College, David Perault Marshall University, Terry R. Shank Menlo College, Neil Marshall Millersville University of Pennsylvania, Angela Cuthbert Minneapolis Community and Technical College, Robert R. Ruliffson Minnesota State College-Southeast Technical, Roger Skugrud Minnesota West Community and Technical College, Ann M. Mills Mt. San Jacinto College, Shauni Calhoun Mt. San Jacinto College, Jason Hlebakos New Jersey City University, Deborah Freile New Jersey Institute of Technology, Michael P. Bonchonsky

Niagara University, William J. Edwards North Carolina State University, Robert I. Bruck North Georgia College & State University, Kelly West North Greenville University, Jeffrey O. French Northeast Lakeview College, Diane B. Beechinor Northeastern University, Jennifer Rivers Cole Northern Virginia Community College, Jill Caporale Northwestern College, Dale Gentry Northwestern Connecticut Community College, Tara Jo Holmberg Northwood University Midland, Stelian Grigoras Notre Dame College, Judy Santmire Oakton Community College, David Arieti Parkland College, Heidi K. Leuszler Penn State Beaver, Matthew Grunstra Philadelphia University, Anne Bower *Pierce College*, Thomas Broxson Purdue University Calumet, Diane Trgovcich-Zacok Queens University of Charlotte, Greg D. Pillar Raritan Valley Community College, Jay F. Kelly Reading Area Community College, Kathy McCann Evans Rutgers University, Craig Phelps Saddleback College, Morgan Barrows Santa Monica College, Dorna S. Sakurai Shasta College, Morgan Akin Shasta College, Allison Lee Breedveld Southeast Kentucky Community and Technical College, Sheila Miracle Southern Connecticut State University, Scott M. Graves Southern New Hampshire University, Sue Cooke Southern New Hampshire University, Michele L. Goldsmith Southwest Minnesota State University, Emily Deaver Spartanburg Community College, Jeffrey N. Crisp

Spelman College, Victor Ibeanusi St. Johns River State College, Christopher J. Farrell Stonehill College, Susan M. Mooney Tabor College, Andrew T. Sensenig Temple College, John McClain Terra State Community College, Andrew J. Shella Texas A&M University-Corpus Christi, Alberto M. Mestas-Nuñez Tusculum College, Kimberly Carter University of Nebraska, James R. Brandle University of Akron, Nicholas D. Frankovits University of Denver, Shamim Ahsan University of Kansas, Kathleen R. Nuckolls University of Miami, Kathleen Sullivan Sealey University of Missouri at Columbia, Douglas C. Gayou University of Missouri-Kansas City, James B. Murowchick University of North Carolina Wilmington, Jack C. Hall University of North Texas, Samuel Atkinson University of Tampa, Yasoma Hulathduwa University of Tennessee, Michael McKinney University of Utah, Lindsey Christensen Nesbitt University of Wisconsin-Stevens Point, Holly A Petrillo University of Wisconsin-Stout, Charles R. Bomar Valencia College, Patricia Smith Vance Granville Community College, Joshua Eckenrode Villanova University, Lisa J. Rodrigues Virginia Tech, Matthew Eick Waubonsee Community College, Dani DuCharme Wayne County Community College District, Nina Abubakari West Chester University of Pennsylvania, Robin C. Leonard Westminster College, Christine Stracey Worcester Polytechnic Institute, Theodore C. Crusberg Wright State University, Sarah Harris

Required=Results

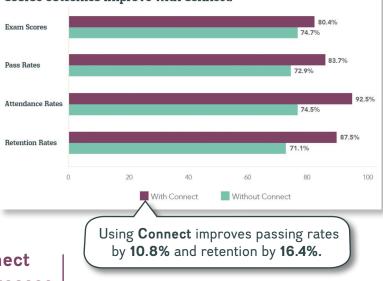
McGraw-Hill Connect[®] Learn Without Limits

Connect is a teaching and learning platform that is proven to deliver better results for students and instructors.

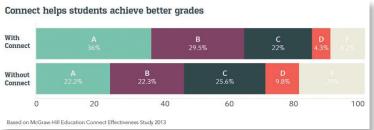
Connect empowers students by continually adapting to deliver precisely what they need, when they need it, and how they need it, so your class time is more engaging and effective.

88% of instructors who use **Connect** require it; instructor satisfaction **increases** by 38% when **Connect** is required.

Analytics-


Connect Insight®

Connect Insight is Connect's new one-of-a-kind visual analytics dashboard—now available for both instructors and students—that provides at-a-glance information regarding student


performance, which is immediately actionable. By presenting assignment, assessment, and topical performance results together with a time metric that is easily visible for aggregate or individual results, Connect Insight gives the user the ability to take a just-intime approach to teaching and learning, which was never before available. Connect Insight presents data that empowers students and helps instructors improve class performance in a way that is efficient and effective.

Mobile-

Connect's new, intuitive mobile interface gives students and instructors flexible and convenient, anytime–anywhere access to all components of the Connect platform.

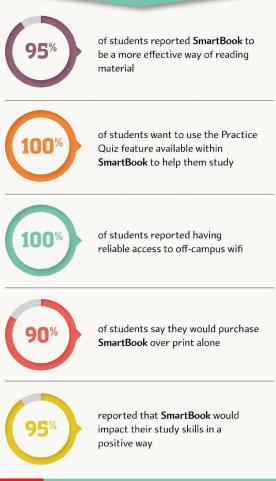
Course outcomes improve with Connect.

Students can view their results for any **Connect** course.

-		TO DO
Bavid Ochoterena	LATE Acounting week 1 quiz	PRACTICE
Assignments	START: 12/1 - DUE: 12/4 ACCOUNTING SECTION 1	100100
	LATE CH 02 - Ouiz Intermediate START: 12/1 DUE: 12/10 PUNTOS SPANISH 101 - SECTION 001	QUIZ
Calendar	PRE LATE Chapter 4 START: 12/1 - DUE: 12/17 - ECONOMICS 101	HOMEWORK
T Casses	Ch 05. En cesar Vocabulario DUE: 12/22 - PUNTOS SPANISH 101 - SECTION CO1	LS
6J Insight	CH 05 States of Consciousness START: 12/12 - DUE: 12/23 - PSYCHOLOGY 101 - SECTION 1A	HOMEWORK
	Guiz - Extra Credit START: 12/18 - DUE: 12/24 - PSYCHOLOGY 101 - SECTION IA	QUIZ
connect [.]	BECHARGE Ch 02. En la universidad: Vocabulario DUE: 12/7 - PUNTOS SPANISH 101 - SECTION 001	LS

Adaptive

THE FIRST AND ONLY **ADAPTIVE READING EXPERIENCE** DESIGNED TO TRANSFORM THE WAY STUDENTS READ


More students earn **A's** and **B's** when they use McGraw-Hill Education **Adaptive** products.

SmartBook[®]

Proven to help students improve grades and study more efficiently, SmartBook contains the same content within the print book, but actively tailors that content to the needs of the individual. SmartBook's adaptive technology provides precise, personalized instruction on what the student should do next, guiding the student to master and remember key concepts, targeting gaps in knowledge and offering customized feedback, and driving the student toward comprehension and retention of the subject matter. Available on smartphones and tablets, SmartBook puts learning at the student's fingertips—anywhere, anytime.

Over **4 billion questions** have been answered, making McGraw-Hill Education products more intelligent, reliable, and precise.

SMARTBOOK[®]

Mc Graw Hill Education

n a 2015 focus group survey at Pellissippi State e administered by McGraw-Hill Education

Guided Tour

Application-based learning contributes to engaged scientific investigation.

Key concepts from each chapter are presented in a beautifully arranged layout to guide the student through the often complex network issues.

Case Studies

What is biodiversity worth?

KEY CONCEPTS

All chapters open with a realworld case study to help students appreciate and understand how environmental science impacts lives and how scientists study complex issues.

CAN YOU EXPLAIN?

It. hindive

CASE STUDY

Palm Oil and Endangered Species

A re your donuts, tootpaste, cally endangered orangutans and tigers in Sumata and Borneo? How could that be possible, you may wonder. The link is in rapidly expanding Indonesian palm plantations, which are destroying the habitat of rare species, such as orangutars, tigers, thinos, and elephants. What we ronce some of the most highly productive and borests. In the world are rapidly being converted into palm monocultures that have no room for endangered species.

In Indonesian Orang means person or people, and utan means of the forest. Orangutans are among the closest and most charismatic of our primate relatives, sharing at

least 97 percent of our genes. They're also among the most critically endangered of all the great apes. It's estimated that between 1000 and 5,000 of these shy forest glainst are fulled every year by loggers or poachers. Today only about 6,000 orangutans are left in Sumatra and about 50,000 in Borneo. The United Nations warms that unless.current practices change, there may be no wild orang-

▲ FIGURE 6.1 Ove

and the world's third highest greenhouse gas emissions. And expansion of paim oil is a driving force in both forest destruction ing force in both forest destruction the process usually starts with logging to harvest the valuable hardwoods. Habitat destruction drives out witchffe, while a network of logging roads makes it possible areas. Logging stash is burned to clear the land for planting (and in many cases, fires cover up lilegal logging). and for planting (and in many cases, fires cover up lilegal

Oli pains are inghty portable. A single hetcher (2.47 acres) of pains can yield 30 metric tors of oil per year, or as much as tother oilsed ops (Fig. 6.1). Palm oil is now indonessis third argest import, nignig in 318 billion annually. One of the worst kinds of forest soils prevent biomass decomposition. Peat can contain a 78 times as much cans on as immeral soil, and chaining © Google Earth[™] interactive satellite imagery gives students a geographic context for global places and topics discussed in the text. Google Earth[™] icons indicate a corresponding exercise in Connect. In these exercises students will find links to locations mentioned in the text, and corresponding assessments that will help them understand environmental topics.

Active Learning

Students will be encouraged to practice critical thinking skills and apply their understanding of newly learned concepts and to propose possible solutions.

Active LEARNING

Comparing Biome Climates

Look back at the climate graphs for San Diego, California, an arid region, and Belém, Brazil, in the Amazon rainforest (see fig. 5.6). How much colder is San Diego than Belém in January? In July? Which location has the greater range of temperature through the year? How much do the two locations differ in precipitation during their wettest months?

Compare the temperature and precipitation in these two places with those in the other biomes shown in the pages that follow. How wet are the wettest biomes? Which biomes have distinct dry seasons? How do rainfall and length of warm seasons explain vegetation conditions in these biomes?

mm difference in precipitation in December-February. July; San Diego has the greater range of temperature; there is about 250 ANSWERS: San Diego is about 13°C colder in January, about 6°C colder in

What Can YOU DO?

Working Locally for Ecological Diversity

You might think that diversity and complexity of ecological systems are too large or too abstract for you to have any influence. But you can contribute to a complex, resilient, and interesting ecosystem, whether you live in the inner city, a suburb, or a rural area

- Take walks. The best way to learn about ecological systems in your area is to take walks and practice observing your environment. Go with friends, and try to identify some of the species and trophic relationships in your area
- Keep your cat indoors. Our lovable domestic cats are also very successful predators. Migratory birds, especially those nesting on the ground, have not evolved defenses against these predators.
- Plant a butterfly garden. Use native plants that support a diverse insect population. Native trees with berries or fruit also support birds. (Be sure to avoid non-native invasive species.) Allow structural diversity (open areas, shrubs, and trees) to support a range of species.
- Join a local environmental organization. Often, the best way to be effective is to concentrate your efforts close to home. City parks and neighborhoods support ecological communities, as do farming and rural areas. Join an organization maintain ecosystem health; start by looking for environmental clubs working

What Can You Do?

Students can employ these practical ideas to make a positive difference in our environment.

Exploring Science

exemplify the principles of

scientific observation and

promote scientific literacy.

Current environmental issues

data-gathering techniques to

Remote Sensing, Photosynthesis, and Material Cycles

easuring primary productivity is important for understanding individual plants and Measuring primary productivity is important to of primary productivity is also key to understanding global processes, such as material cycling, and biological activity:

- In global carbon cycles, how much carbon is stored by plants, how quickly is it stored, and how does carbon storage compare in contrasting environments, such
- as the Arctic and the tropics? How does this carbon storage affect global climates (see chapter 9)?
- In global nutrient cycles, how much nitrogen and phosphorus wash offshore,
- and where?

EXPLORING

Science

How can environmental scientists measure primary production (photosynthesis) at a global scale? In a small, relatively closed ecosystem, such as a pond, ecologists can collect and analyze samples of all trophic levels. But that method is impossible for large ecosystems, especially for oceans, which cover 70 percent of the earth's surface. One of the newest methods of quantifying biological productivity involves remote sensing, or using data collected from satellite sensors that observe the energy reflected from the earth's surface.

As you have read in this chapter, chlorophyll in green plants absorbs red and blue

What Do YOU THINK?

Shade-Grown Coffee and Cocoa

Do your purchases of coffee and chocolate help to protect or destroy tropical forests? Coffee and cocoa are two of the many products grown exclusively in developing countries but consumed almost entirely in the wealthier, developed nations. Coffee grows in cool, mountain areas of the tropics, while cocoa is native to the warm, moist lowlands. What sets these two apart is that both come from small trees adapted to grow in low light, in the shady understory of a mature forest. Shade-grown coffee and cocoa (grown beneath an understory of taller trees) allow farmers to produce a crop at the same time as forest habitat remains for birds, butterflies, and other wild species.

Until a few decades ago, most of the world's coffee and cocoa were shade-grown. But new varieties of both crops have been developed that can be grown in full sun. Growing in full sun, trees can be crowded together more closely. With more sunshine, photosynthesis and yields increase.


 Cocoa pods grow directly on the trunk and large branches of cocoa trees

> ha of coffee and cocoa plantations in these areas are converted to monocultures, an incalculable number of species will be

The Brazilian state of Bahia demonstrates both the ecological importance of these crops and how they might help preserve forest species. At one time, Brazil produced much of the world's cocoa, but in the early 1900s, the crop was introduced into West Africa. Now Côte d'Ivoire alone grows more than 40 percent of the world total. Rapid increases in global supplies have made prices plummet, and the value of Brazil's harvest has dropped by 90 percent. Côte d'Ivoire is aided in this competition by a labor system that reportedly includes widespread child slavery. Even adult workers in Côte d'Ivoire get only about \$165 (U.S.) per year (if they get paid at all), compared with a mini-

What Do You Think?

Students are presented with challenging environmental studies that offer an opportunity to consider contradictory data, special interest topics, and conflicting interpretations within a real scenario.

Pedagogical Features Facilitate Student Understanding of Environmental Science

Environmental Conservation: Forests, Grasslands, Parks, and Nature Preserves

LEARNING OUTCOMES

- What portion of the world's original forests remains?
- v are the world's grasslands distributed, and wh vities degrade grasslands? What activities threaten global forests? What steps can be taken to preserve them?
- What are the original purposes of parks and nature preserves in North America? hat are some steps to Where are the world's most extensive grasslands

Learning Outcomes

Questions at the beginning of each chapter challenge students to find their own answers.

Practice Quiz

Short-answer questions allow students to check their knowledge of chapter concepts.

PRACTICE QUIZ

- What are the two most important nutrients causing eutrophication in the Chesapeake Bay? What are systems and how do feedback loops regulate them?
- 2. What are systems and how do feedback loops regulate them?
 3. Your body contains text numbers of carbon atoms. How is it possible that some of these carbons may have been part of the body of a prehistoric creature?
 4. List six unique properties of water. Describe, hirdly, how each of these properties makes water essential to life as we know h.
- these properties makes water essential to life as we know it.
 What is DNA, and why is it important?
 The occurs store a vast amound of heat, but this huge reservoir of energy is of little use to humans. Explain the difference between high-quality and low-quality energy.
 In the biosphere, matter follows circular pathways, while energy flows in a linear fashion. Explain.

Apply the principles you have learned in this chapter to discuss these questions with other students. 1. Ecosystems are often defined as a matter of convenience because

- Leosy stems are order to embed as a matter or concentrate or calase we can't study everything at once. How would you describe the characteristics and boundaries of the ecosystem in which you live? In what respects is your ecosystem an open one?
- Think of some practical examples of increasing entropy in everyday life. Is a messy room really evidence of thermodynamics at work, or merely personal preference?
- Some chemical bonds are weak and have a very short half-life (fractions of a second, in some cases); others are strong and stable,

Which wavelengths do our eyes respond to, and why? (Refer to fig. 2.13.) About how long are short ultraviolet wavelengths compared to microwave lengths?
 Where do extremophiles live? How do they get the energy they need for survival?

- need for survival? 10. Ecosystems require energy to function. From where does most of this energy come? Where does it go? 11. How do green plants capture energy, and what do they do with it? 12. Define the terms species, population, and biological community. 13. When the function of the second sec
- 13. Why are big, fierce animals rare?
- 14. Most ecosystems can be visualized as a pyramid with many organ isms in the lowest trophic levels and only a few individuals at the top. Give an example of an inverted numbers overmid.
 - lasting for years or even centuries. What would our world be like if all chemical bonds were cither very weak or extremely strong? 4. If you had to design a research project to evaluate the relative biomass of producers and consumers in an ecosystem, what would you measure? (*Note:* This could be a natural system or a human-medo end.)
 - nade one.)
 - Understanding storage compartments is essential to understanding material cycles, such as the carbon cycle. If you look around your backyard, how many carbon storage compartments are there? Which ones are the biggest? Which ones are the longest lasting?

Critical Thinking and Discussion Questions

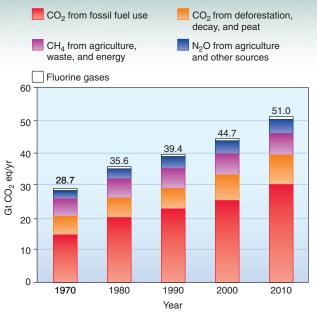
Brief scenarios of everyday occurrences or ideas challenge students to apply what they have learned to their lives.

DATA ANALYSIS Examining Nutrients in a Wetland Sys

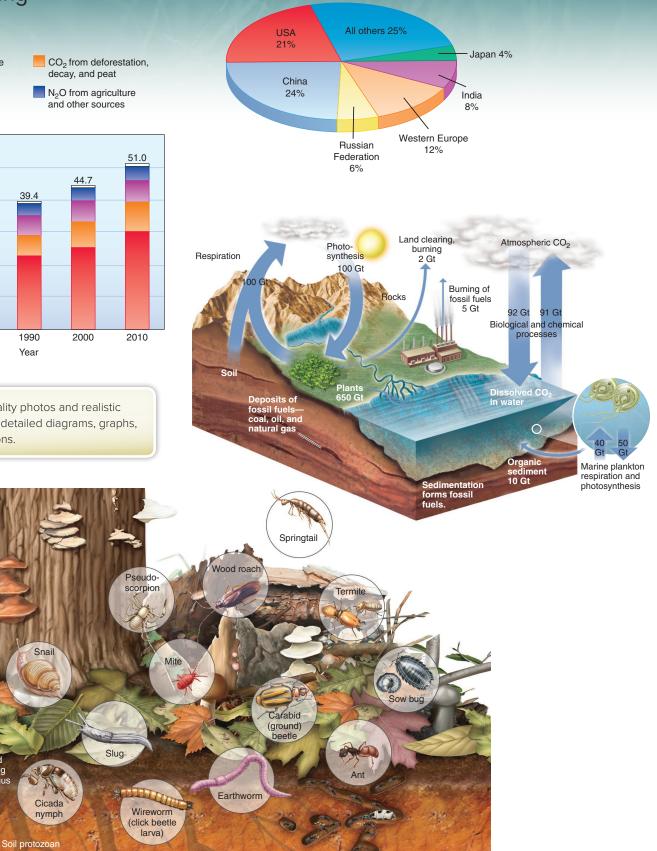
As you have read, movements of nitrogen and phasphorus are among the most important considerations in many welland systems, because high levels of these nutrients can cause excessive algae and bacteria growth. This is a topic of great interst, and many stadles have examined how nutrients move in a welland, as well as in other ecosystems. Taking a little time to examine these nutrient cycles in detail will draw on your knowledge of atoms, compounds, systems, cycles, and other ideas in

connect[®]

this chapter. Understanding nutrient cycling will also help you in later chapters of this book. One excellent overview was produced by the Environmental Protec-tion Agency. Go to Connect to find a description of the figure shown here: and to further explore the movement of our dominant nutrient, nitrogen, through environmental systems.


FIGURE 1 A detailed schematic diagram of the nitrogen cycle in a welland. Study the online original to fill in the boxes SOURCE EPA Numeric Clearly Technical Collaboration Manual Vision (Study Westerscher Cycle Handwarden Collaboration)

TO ACCESS ADDITIONAL RESOURCES FOR THIS CHAPTER, PLEASE VISIT CONNECT AT www.ceanist.mb/ducation.com You will find Smathbook, an interactive and adaptive reading experience, Google Earth^w Everticises, additional Claus Studies, and Data Analysis exercises.


Data Analysis

At the end of each chapter, these exercises give students further opportunities to apply critical thinking skills and analyze data. These are assigned through Connect in an interactive online environment. Students are asked to analyze data in the form of documents, videos, and animations.

Topical Photos and Instructional Art Support Learning

Numerous high-quality photos and realistic illustrations display detailed diagrams, graphs, and real-life situations.

Soil fungu

Centipede

Nematode and nematode-killing constricting fungus

CHAPTER

Understanding Our Environment

LEARNING OUTCOMES

Students work on landscape plantings at Furman University's Shi Center for Sustainability cottage. Students here contribute energy and ideas while they learn about sustainability.

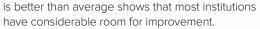
After studying this chapter, you should be able to answer the following questions:

- Describe several important environmental problems facing the world.
- List several examples of progress in environmental quality.
- Explain the idea of sustainability and some of its aims.
- Why are scientists cautious about claiming absolute proof of particular theories?
- What is critical thinking, and why is it important in environmental science?
- Why do we use graphs and data to answer questions in science?
- Identify several people who helped shape our ideas of resource conservation and preservation—why did they promote these ideas when they did?

CASE STUDY

f you're taking a course in environmental science, chances are you are interested in understanding environmental resources and our impacts on them. You might be interested in water resources, biodiversity, environmental health, climate change, chemistry, population change, ecology, or other aspects of our environment. You might also be interested in how you can apply your knowledge for ensuring the longevity, or sustainability, of environmental resources over time.

One of the ways you can apply your knowledge at your own college or university is by helping with sustainability assessment and reporting. Sustainability assessments ask a range of questions: Does an institution actively conserve water or energy? Does it work to promote biodiversity or reduce pollution? Does it cooperate with the local community to improve living conditions around it?

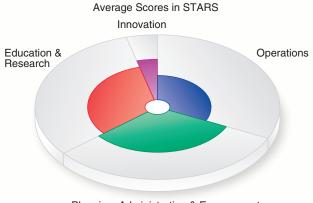

Furman University, in Greenville, SC, is one of about 240 schools that have been using the Sustainability Tracking, Assessment and Rating System (STARS) to track their progress. STARS is one of several reporting systems that help colleges and universities understand, compare, and ideally improve environmental performance in relation to peer institutions. The rating system is run by the Association for the Advancement of Sustainability in Higher Education (AASHE), an organization of institutions that also provides a network for sharing ideas and gives a platform for schools to show off their successes.

In 2015, Furman's assistant sustainability coordinator Yancey Fouché turned in the university's third report, raising the school's rating from Silver to Gold. This improvement reflects the work of students, faculty, administrators, staff, and alums who want to see their university do well *and* do good. The report also reflects the contributions of students who assisted with data collection and analysis, a valuable contribution to their educational experience. Furman is one of only about 80 colleges and universities to get a Gold rating in the recent round of submissions.

How did Furman achieve its high score? By performing well across a wide range of criteria. STARS gives points for evidence of sustainability in the curriculum, in research activities by students and faculty, and for campus engagement and community service. There are points for operations: greenhouse gas emissions, building management, use of renewable energy, purchasing of environmentally safe cleaning products, and other practices. Grounds management that preserves biodiversity, conserves water resources, reduces storm water runoff, and cuts pesticide use also gets points. Policies on transportation and waste management (especially recycling and composting rates) matter. Governance-the ways administrators and committees support these practices-also contributes points. STARS also gives credits for measures of health and well-being: are there wellness programs in place, health and safety, and comfortable work spaces? Points are also available for sustainable investment practices with an institution's endowment. Some of these points are easier to achieve than others. New sustainability courses can be instituted relatively rapidly. Building efficiency and energy systems, "operations," are expensive and difficult to change (fig. 1.1).

Furman did especially well in curriculum, research, and campus engagement, getting 50 of 52 possible points in these categories. Like other schools, it didn't do as well on building operations— Furman earned only 15 of 36 points in these categories—or on waste minimization and transportation (8 of 17 points). The fact that Furman

Principles of Environmental Science


Even though it's hard to change an institution's energy use and transportation practices, having benchmarks to aim for, and peer institutions for comparison, is essential. These measures motivate improvements when opportunities arise, and provide a common framework for campus conversations. Renovations and new buildings, like Furman's showcase Shi Center for Sustainability Cottage (opening photo), are always an opportunity to invest in new systems that save both energy and money over the long term.

Most of us won't submit a STARS report ourselves—it requires a lot of specialized data collection—but just about anybody can do something that helps improve a STARS rating, and with it the campus environment. Student environmental activities add points. Participation in student governance, environmental coursework, work with the local community, and many other activities contribute. And student groups are essential in pushing administrations to support energy conservation, waste reduction, local foods, community empowerment, and other priorities.

All this has a great deal to do with the environmental science you're about to study. Almost every resource and environmental question in a STARS report is related to a topic you'll explore here. Biodiversity, water conservation, energy use and alternative energy resources, waste management, sustainable food resources, environmental health, and environmental policy are all concerns of a STARS report, and you will learn about them in an environmental science course.

Environmental science also emphasizes the value of quantifying answers. If you can measure something, from pollution levels to STARS index values, you have the opportunity to see if progress is happening over time.

The chapters that follow are intended to give you grounding in the knowledge you need to make these contributions. They also aim to help you understand the basics of scientific approaches to understanding our environment.

Planning, Administration & Engagement

▲ FIGURE 1.1 This pie chart shows the proportion of a STARS score contributed by different categories (slice width) and overall average score (length of slice) for all reporting institutions. Operations tend to score low, while innovation and engagement tend to score higher, on average. DATA SOURCE: Association for the Advancement of Sustainability in Higher Education.

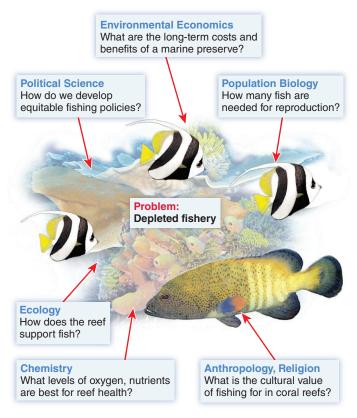
Today we are faced with a challenge that calls for a shift in our thinking, so that humanity stops threatening its life-support system.

> ---WANGARI MAATHAI, WINNER OF 2004 NOBEL PEACE PRIZE

1.1 WHAT IS ENVIRONMENTAL SCIENCE?

Environmental science is the use of scientific approaches to understand the complex systems in which we live. It is the systematic study of our environment and our place in it. Much, though not all, of environmental science involves applying basic knowledge to realworld problems: an environmental scientist might study patterns of biodiversity or river system dynamics for their own sake. An environmental scientist might also study these systems with the larger aim of saving species or cleaning up a river. Environmental scientists often get involved in sustainability efforts, such as the issues in a STARS report, in their home universities, colleges, or communities.

In this chapter we will examine some main ideas and approaches used in environmental science. You will explore these themes in greater depth in later chapters. We will examine the scientific method, critical thinking, and other approaches to evaluating evidence. Finally we will examine some key ideas that have influenced our understanding of environmental science.


Environmental science is integrative

We inhabit both a natural world of biological diversity and physical processes and a human environment of ideas and practices. Environmental science involves both these natural and human worlds. Because environmental systems are complex and interconnected, the field also draws on a wide range of disciplines and skills, and multiple ways of knowing are often helpful for finding answers (fig. 1.2). Biology, chemistry, earth science, and geography contribute ideas and evidence of basic science. Political science, economics, communications, and arts help us understand how people share resources, compete for them, and evaluate their impacts on society. One of your tasks in this course may be to understand where your own knowledge and interests contribute (Active Learning, p. 4). Identifying your particular interest will help you do better in this class, because you'll have more reason to explore the ideas you encounter.

Environmental science is not the same as environmental advocacy. Environmental science itself requires no positions regarding environmental policy. However, environmental science is an analytical approach that is needed to make us confident that policy positions we do take are reasonable and are based on observable evidence, not just assumption or hearsay.

Environmental science is global

You are already aware of our global dependence on resources and people in faraway places, from computers built in China to oil extracted in Iraq or Venezuela. These interdependencies become

▲ FIGURE 1.2 Many types of knowledge are needed in environmental science. A few examples are shown here.

clearer as we learn more about global and regional environmental systems. Often the best way to learn environmental science is to see how principles play out in real places. Familiarity with the world around us will help you understand the problems and their context. Throughout this book we've provided links to places you can see in Google Earth, a free online mapping program that you can download from googleearth.com. When you see a blue globe in the margin of this text, like the one at left, you can go to Connect and find placemarks that let you virtually visit places discussed. In Google Earth you can also save your own placemarks and share them with your class.

Environmental science helps us understand our remarkable planet

Imagine that you are an astronaut returning to the earth after a trip to the moon or Mars. What a relief it would be, after the silent void of outer space, to return to this beautiful, bountiful planet (fig. 1.3). We live in an incredibly prolific and colorful world that is, as far as we know, unique in the universe. Compared with other planets in our solar system, temperatures on the earth are mild and relatively constant. Plentiful supplies of clean air, fresh water, and fertile soil are regenerated endlessly and spontaneously by biogeochemical cycles and biological communities (discussed in chapters 2 and 3). The value of these ecological services is almost incalculable, although economists estimate that they account for a substantial proportion of global economic activity (see chapter 15).

Active LEARNING

Finding Your Strengths in This Class

A key strategy for doing well in this class is to figure out where your strengths and interests intersect with the subjects you will be reading about. As you have read, environmental science draws on many kinds of knowledge (fig. 1.2). Nobody is good at all of these, but everyone is good at some of them. Form a small group of students; then select one of the questions in section 1.2. Explain how each of the following might contribute to understanding or solving that problem:

artist, writer, politician, negotiator, chemist, mathematician, hunter, angler, truck driver, cook, parent, builder, planner, economist, speaker of multiple languages, musician, business person

ANSWERS: All of these provide multiple insights; answers will vary.

Perhaps the most amazing feature of our planet is its rich diversity of life. Millions of beautiful and intriguing species populate the earth and help sustain a habitable environment (fig. 1.4). This vast multitude of life creates complex, interrelated communities where towering trees and huge animals live together with, and depend upon, such tiny life-forms as viruses, bacteria, and fungi. Together, all these organisms make up delightfully diverse, self-sustaining ecosystems, including dense, moist forests; vast, sunny savannas; and richly colorful coral reefs.

From time to time we should pause to remember that, in spite of the challenges of life on earth, we are incredibly lucky to be here. Because environmental scientists observe this beauty around us, we often ask what we can do, and what we *ought* to do, to ensure that future generations have the same opportunities to enjoy this bounty.

Methods in environmental science

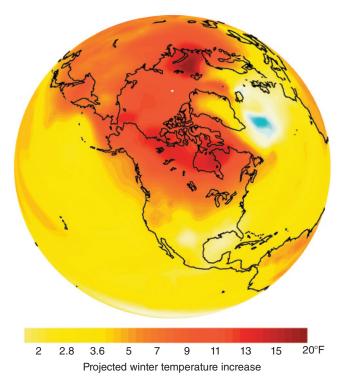
Keep an eye open for the ideas that follow as you read this book. These are a few of the methods that you will find in science generally. They reflect the fact that environmental science is based on careful, considered observation of the world around us.

Observation: A first step in understanding our environment is careful, detailed observation and evaluation of factors involved in pollution, environmental health,

▶ FIGURE 1.3 The life-sustaining ecosystems on which we all depend are unique in the universe, as far as we know.

▲ FIGURE 1.4 Perhaps the most amazing feature of our planet is its rich diversity of life.

conservation, population, resources, and other issues. Knowing about the world we inhabit helps us understand where our resources originate, and why.


The scientific method: Discussed later in this chapter, the scientific method is an orderly approach to asking questions, collecting observations, and interpreting those observations to find an answer to a question. In daily life, many of us have prior expectations when we start an investigation, and it takes discipline to avoid selecting evidence that conveniently supports our prior assumptions. In contrast, the scientific method aims to be rigorous, using statistics, blind tests, and careful replication to avoid simply confirming the investigator's biases and expectations.

Quantitative reasoning: This means understanding how to compare numbers and interpret graphs, to perceive what they show about problems that matter. Often this means interpreting changes in values, such as population size over time.

Uncertainty: A repeating theme in this book is that uncertainty is an essential part of science. Science is based on observation and testable hypotheses, but we know that we cannot make all observations in the universe, and we have not asked all possible questions. We know there are

limits to our knowledge. Understanding how much we *don't* know, ironically, can improve our confidence in what we *do* know.

Critical and analytical thinking: The practice of stepping back to examine what you think and why you think it, or why someone says or believes a particular idea, is known generally as critical thinking. Acknowledging uncertainty is one part of critical thinking. This is a skill you can practice in all your academic pursuits, as you make sense of the complexity of the world we inhabit.

▲ FIGURE 1.5 Climate change is projected to raise temperatures, especially in northern winter months. DATA SOURCE: NOAA, 2010.

1.2 MAJOR THEMES IN ENVIRONMENTAL SCIENCE

In this section we review some of the main themes in this book. All of these are serious problems, but they are also subjects of dramatic innovation. Often solutions lie in policy and economics, but environmental scientists provide the evidence on which policy decisions can be made.

We often say that crisis and opportunity go hand in hand. Serious problems can drive us to seek better solutions. As you read, ask yourself what factors influence these conditions, and what steps might be taken to resolve them.

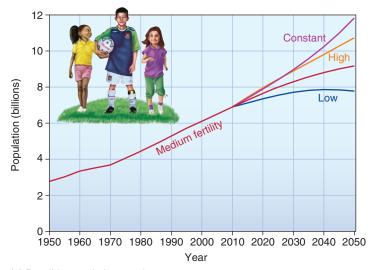
Environmental quality

Climate Change The atmosphere retains heat near the earth's surface, which is why it is warmer here than in space. But burning fossil fuels, clearing forests and farmlands, raising billions of methane-producing cattle, and other activities have greatly increased concentrations of carbon dioxide and other "greenhouse gases." In the past 200 years, concentrations of CO₂ in the atmosphere have increased nearly 50 percent. Climate models indicate that by 2100, if current trends continue, global mean temperatures will probably increase by 2° to 6°C compared to 1990 temperatures $(3.6^{\circ} \text{ to } 12.8^{\circ}\text{F}; \text{ fig. } 1.5)$, far warmer than the earth has been since the beginning of human civilization. For comparison, the last ice age was about 4°C cooler than now. Increasingly severe droughts and heat waves are expected in many areas. Greater storm intensity and flooding are expected in many regions. Disappearing glaciers and snowfields threaten the water supplies on which cities such as Los Angeles and Delhi depend.

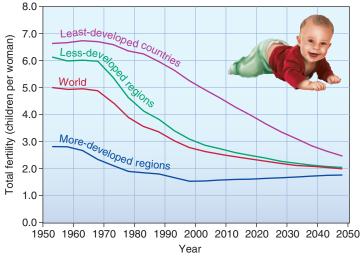
Military experts argue that climate change is a greater global threat than terrorism. Climate change could force hundreds of millions of people from their homes, trigger economic and social catastrophe, and instigate wars over water and arable land. Many people have argued that recent insurgencies and terrorism result from the dislocation and desperation of climate refugees in regions now too dry and hot for reliable farming.

On the other hand, efforts to find solutions to climate change may force new kinds of international cooperation. New strategies for energy production could reduce conflicts over oil and promote economic progress for the world's poorest populations.

Clean Water Water may be the most critical resource in the twenty-first century. At least 1.1 billion people lack access to safe drinking water, and twice that many don't have adequate sanitation. Polluted water contributes to the death of more than 15 million people every year, most of them children under age 5. About 40 percent of the world population lives in countries where water demands now exceed supplies, and the United Nations projects that by 2025 as many as three-fourths of us could live under similar conditions. Despite ongoing challenges, more than 800 million people have gained access to improved water supplies and modern sanitation since 1990.


Air Quality Air quality has worsened dramatically in newly industrializing areas, especially in much of China and India. In Beijing and Delhi, wealthy residents keep their children indoors on bad days and install air filters in their apartments. Poor residents become ill, and cancer rates are rising in many areas. Millions of early deaths and many more illnesses are triggered by air pollution each year. Worldwide, the United Nations estimates, more than 2 billion metric tons of air pollutants (not including carbon dioxide or windblown soil) are released each year. These air pollutants travel easily around the globe. On some days 75 percent of the smog and airborne particulates in California originate in Asia; mercury, polychlorinated biphenyls (PCBs), and other industrial pollutants accumulate in arctic ecosystems and in the tissues of native peoples in the far north.

The good news is that environmental scientists in China, India, and other countries suffering from poor air quality are fully aware that Europe and the United States faced deadly air pollution decades ago. They know that enforceable policies on pollution controls, together with newer, safer, and more efficient technology will correct the problem, if they can just get needed policies in place.


Human population and well-being

Population growth There are well over 7 billion people on earth, about twice as many as there were 40 years ago. We are adding about 80 million more each year. Demographers report a transition to slower growth rates in most countries: improved education for girls and better health care are chiefly responsible. But present trends project a population between 8 and 10 billion by 2050 (fig. 1.6a). The impact of that many people on our natural resources and ecological systems strongly influences many of the other problems we face.

The slowing growth rate is encouraging, however. In much of the world, better health care and a cleaner environment have improved longevity and reduced infant mortality. Social stability has allowed families to have fewer, healthier children. Population has stabilized in most industrialized countries and even in some very

(a) Possible population trends

(b) Fertility rates

▲ FIGURE 1.6 Bad news and good news: globally, populations continue to rise (a), but our rate of growth has plummeted (b). Some countries are below the replacement rate of about two children per woman. SOURCE: United Nations Population Program, 2011.

poor countries where social security, education, and democracy have been established. Since 1960 the average number of children born per woman worldwide has decreased from 5 to 2.45 (fig. 1.6b). By 2050 the UN Population Division predicts, most countries will have fertility rates below the replacement rate of 2.1 children per woman. If this happens, the world population will stabilize at about 8.9 billion rather than the 9.3 billion previously expected.

Infant mortality in particular has declined in most countries, as vaccines and safe water supplies have become more widely available. Smallpox has been completely eradicated, and polio has been vanquished except in a few countries, where violent conflict has contributed to a resurgence of the disease. Life expectancies have nearly doubled, on average (fig. 1.7a).

Hunger and food Over the past century, global food production has increased faster than human population growth. We now

produce about half again as much food as we need to survive, and consumption of protein has increased worldwide. In most countries weight-related diseases are far more prevalent than hungerrelated illnesses. In spite of population growth that added nearly a billion people to the world during the 1990s, the number of people facing food insecurity and chronic hunger during this period actually declined by about 40 million.

Despite this abundance, hunger remains a chronic problem worldwide because food resources are unevenly distributed. At the same time, soil scientists report that about two-thirds of all agricultural lands show signs of degradation. The biotechnology and intensive farming techniques responsible for much of our recent production gains are too expensive for many poor farmers. Can we find ways to produce the food we need without further environmental degradation? And can we distribute food more equitably? In a world of food surpluses, currently more than 850 million people are chronically undernourished, and at least 60 million people face acute food shortages due to weather, politics, or war (fig. 1.7b).

Information and Education Because so many environmental issues can be fixed by new ideas, technologies, and strategies, expanding access to knowledge is essential to progress. The increased speed at which information now moves around the world offers unprecedented opportunities for sharing ideas. At the same time, literacy and access to education are expanding in most regions of the world (fig. 1.7c). Rapid exchange of information on the Internet also makes it easier to quickly raise global awareness of environmental problems, such as deforestation or pollution, that historically would have proceeded unobserved and unhindered. Improved access to education is helping to release many of the world's population from cycles of poverty and vulnerability. Expanding education for girls is a primary driver for declining birth rates worldwide.

Natural Resources

Biodiversity Loss Biologists report that habitat destruction, overexploitation, pollution, and the introduction of exotic organisms are eliminating species as quickly as the great extinction that marked the end of the age of dinosaurs. The United Nations Environment Programme reports that over the past century more than 800 species have disappeared and at least 10,000 species are now considered threatened. This includes about half of all primates and freshwater fish, together with around 10 percent of all plant species. Top predators, including nearly all the big cats in the world, are particularly rare and endangered. A nationwide survey of the United Kingdom in 2004 found that most bird and butterfly populations had declined by 50 to 75 percent over the previous 20 years. At least half of the forests existing before the introduction of agriculture have been cleared, and many of the ancient forests, which harbor some of the greatest biodiversity, are rapidly being cut for timber, for oil extraction, or for agricultural production of globally traded commodities such as palm oil or soybeans.

Conservation of Forests and Nature Preserves While exploitation continues, the rate of deforestation has slowed in many regions. Brazil, which led global deforestation rates for decades, has dramatically reduced deforestation rates. Nature preserves and protected areas have increased sharply over the past few decades.

Ecoregion and habitat protection remains uneven, and some areas are protected only on paper. Still, this is dramatic progress in biodiversity protection.

Marine Resources The ocean provides irreplaceable and imperiled food resources. More than a billion people in developing countries depend on seafood for their main source of animal protein, but most commercial fisheries around the world are in steep decline. According to the World Resources Institute, more than three-quarters of the 441 fish stocks for which information is available are severely depleted or in urgent need of better management. Some marine biologists estimate that 90 percent of all the large predators, including bluefin tuna, marlin, swordfish, sharks, cod, and halibut, have been removed from the ocean.

Despite this ongoing overexploitation, many countries are beginning to acknowledge the problem and find solutions. Marine

(a) Health care

(c) Education

(d) Sustainable resource use



protected areas and improved monitoring of fisheries provide opportunities for sustainable management (fig. 1.7d). The strategy of protecting fish nurseries is an altogether new approach to sustaining ocean systems and the people who depend on them. Marine reserves have been established in California, Hawaii, New Zealand, Great Britain, and many other areas.

Energy Resources How we obtain and use energy will greatly affect our environmental future. Fossil fuels (oil, coal, and natural gas) presently provide around 80 percent of the energy used in industrialized countries. The costs of extracting and burning these fuels are among our most serious environmental challenges. Costs include air and water pollution, mining damage, and violent conflicts, in addition to climate change.

At the same time, improving alternatives and greater efficiency are beginning to reduce reliance on fossil fuels. The cost

(b) Hunger

▲ FIGURE 1.7 Human welfare is improving in some ways and stubbornly difficult in others. Health care is improving in many areas (a). Some 800 million people lack adequate nutrition. Hunger persists, especially in areas of violent conflict (b). Access to education is improving, including for girls (c), and local control of fishery resources is improving food security in some places (d).

of solar power has plummeted, and in many areas solar costs the same as conventional electricity over time. Solar and wind power are now far cheaper, easier, and faster to install than nuclear power or new coal plants.

1.3 HUMAN DIMENSIONS OF ENVIRONMENTAL SCIENCE

Aldo Leopold, one of the greatest thinkers on conservation, observed that the great challenges in conservation have less to do with managing resources than with managing people and our demands on resources. Foresters have learned much about how to grow trees, but still we struggle to establish conditions under which villagers in developing countries can manage plantations for themselves. Engineers know how to control pollution but not how to persuade factories to install the necessary equipment. City planners know how to design urban areas, but not how to make them affordable for everyone. In this section we'll review some key ideas that guide our understanding of human dimensions of environmental science and resource use. These ideas will be useful throughout the rest of this book.

How do we describe resource use and conservation?

The natural world supplies the water, food, metals, energy, and other resources we use. Some of these resources are finite; some are constantly renewed (see chapter 14). Often, renewable resources can be destroyed by excessive exploitation, as in the case of fisheries or forest resources (see section 1.2). When we consider resource

consumption, an important idea is **throughput**, the amount of resources we use and dispose of. A household that consumes abundant consumer goods, foods, and energy brings in a great deal of natural resource–based materials; that household also disposes of a great deal of materials. Conversely a household that consumes very little also produces little waste (see chapter 2).

Ecosystem services, another key idea, refers to services or resources provided by environmental systems (fig. 1.8). Provisioning of resources, such as the fuels we burn, may be the most obvious service we require. Supporting services are less obvious until you start listing them: these include water purification, production of food and atmospheric oxygen by plants, and decomposition of waste by fungi and bacteria. Regulating services include maintenance of temperatures suitable for life by the earth's atmosphere and carbon capture by green plants, which maintains a stable atmospheric composition. Cultural services include a diverse range of recreation, aesthetic, and other nonmaterial benefits. Usually we rely on these resources without thinking about them. They support all our economic activities in some way, but we don't put a price on them because nature doesn't force us to pay for them.

Are there enough resources for all of us? One of the answers to this basic question was given in an essay entitled "**Tragedy of the Commons**," published in 1968 in the journal *Science* by ecologist Garret Hardin. In this classic framing of the problem, Hardin argues that population growth leads inevitably to overuse and then destruction of common resources—such as shared pastures, unregulated fisheries, fresh water, land, and clean air. This classic essay has challenged many to explore alternative ideas about resource management. In many cases, agreed-upon rules for regulating and monitoring a resource ensure that it is preserved. Another strategy is to assign prices to ecological services, to force businesses and economies to account for damages to lifesupporting systems. This approach is discussed in chapter 15. The idea of sustainable development is yet another answer.

Sustainability means environmental and social progress

Sustainability is a search for ecological stability and human progress that can last over the long term. Of course, neither ecological systems nor human institutions can continue forever. We can work, however, to protect the best aspects of both realms and to encourage resiliency and adaptability in both of them. World Health Organization director Gro Harlem Brundtland has defined **sustainable development** as "meeting the needs of the present without compromising the ability of future generations to meet their own needs." In these terms, development, then, means bettering people's lives. Sustainable development, then, means

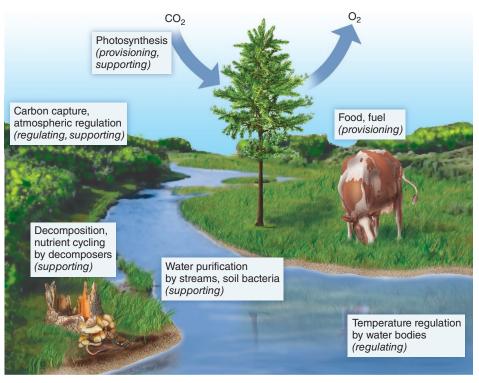


FIGURE 1.8 Ecosystem services we depend on are countless and often invisible.

▲ FIGURE 1.9 In impoverished areas, survival can mean degrading resources that are already overstressed. Helping the poorest populations is not only humane, it is essential for protecting our shared environment.

progress in human well-being that we can extend or prolong over many generations, rather than just a few years.

This idea became widely publicized after the 1992 Earth Summit, a United Nations meeting held in Rio de Janeiro, Brazil. The Rio meeting was a pivotal event. It brought together many diverse groups—environmentalists and politicians from wealthy countries, indigenous people and workers struggling for rights and land, and government representatives from developing countries. The meeting helped these better understand their common needs, and it forced wealthy nations to admit that poorer populations also had a right to a healthy and comfortable life.

Addressing uneven distribution of resources is one of the first tasks of sustainable development. While a few of us live in increasing luxury, the poorest populations suffer from inadequate diet, housing, basic sanitation, clean water, education, and medical care, while the wealthiest consume far more resources than we can readily understand. Policymakers now recognize that eliminating poverty and protecting our common environment are inextricably interlinked. The world's poorest people are both the victims and the agents of environmental degradation (fig. 1.9). Desperate for croplands to feed themselves and their families, many move into virgin forests or cultivate steep, erosion-prone hillsides, where soils are depleted after only a few years. Others migrate to the crowded slums and ramshackle shantytowns that now surround most major cities in the developing world. With no way to dispose of wastes, the residents have no choice but to foul their environment further and contaminate the air they breathe and the water they use for washing and drinking. Children raised in poverty and illness, with few economic opportunities, often are condemned to perpetuate a cycle of poverty.

Affluence is a goal and a liability

Economic growth offers a better life, more conveniences, and more material goods to the billions of people currently living in dire poverty. But social scientists have frequently pointed out that a major reason for both poverty and environmental degradation is that the wealthy consume a disproportionate share of food, water, energy, and other resources, and we produce a majority of the world's waste and pollutants. The United States, for instance, with less than 5 percent of the world's total population, consumes about one-quarter of most commercially traded commodities, such as oil, and produces a quarter to half of most industrial wastes, such as greenhouse gases, pesticides, and other persistent pollutants.

To get an average American through the day takes about 450 kg (nearly 1,000 lb) of raw materials, including 18 kg (40 lb) of fossil fuels, 13 kg (29 lb) of other minerals, 12 kg (26 lb) of farm products, 10 kg (22 lb) of wood and paper, and 450 liters (119 gal) of water. Every year Americans throw away some 160 million tons of garbage, including 50 million tons of paper, 67 billion cans and bottles, 25 billion styrofoam cups, 18 billion disposable diapers, and 2 billion disposable razors (fig. 1.10).

As the rest of the world seeks to achieve a similar standard of living, with higher consumption of conveniences and consumer goods, what will the effects be on the planet? What should we do about this? Can we reduce our consumption rates? Can we find alternative methods to maintain conveniences and a consumption-based economy with lower environmental costs? These are critical questions as we seek to ensure a reasonable future for our grandchildren.

What is the state of poverty and wealth today?

In 2011 the student-led Occupy Wall Street movement used the statistic "99 percent" to draw attention to growing economic disparities in the United States. While many Americans are jobless or homeless, the wealthiest 1 percent control over 35 percent of the nation's wealth. This imbalance has not been seen since the years leading up to the Great Depression. Students leading the Occupy movement argued that such imbalance destabilizes both

▲ FIGURE 1.10 "And may we continue to be worthy of consuming a disproportionate share of this planet's resources." © Lee Lorenz/condé Nast Publications/www.cartoonbank.com